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Yes—no and forced-choice tasks are common in psychology, but the empirical relation between reported
confidence in the 2 tasks has been unclear. The authors examined this relation with 2 experiments. The
general experimental method had participants first report confidence in the truth of each of many general
knowledge statements (a yes—no task) then report confidence in them again when the statements were put
into pairs where it was known that one statement was true and one was false (a forced-choice task). At
issue was how confidence in the statements changed between the yes—no task and the forced-choice task.
Two models, including the normative one, were ruled out as descriptive models. A linear model and a

multiplicative model remain viable contenders.

Imagine taking a true—false test consisting of 50 statements, but
in addition to simply reporting whether each statement is true or
false, you also report your subjective probability, or confidence,
that each is true. Assume that your confidence in the truth of two
particular statements, A and B, is 80% and 40%, respectively.
Next, imagine a subsequent test in which the same 50 statements
are arranged into 25 pairs where one statement in each pair is true
and one is false. Your task now, in addition to selecting the
statement you think is the true one, is to report confidence in each
statement, with the knowledge that exactly one statement in each
pair is true. A and B form one such pair. How confident would you
now be that A is true? That B is true? How confident should you
be?

These two tests capture the essence of a yes—no and a forced-
choice task, respectively, both of which are used extensively in
psychology. For example, in a typical experiment on recognition
memory, participants study a list of items (such as words) and then
take a recognition test in which they attempt to discriminate targets
(words that appeared on the list) from lures (words that did not).
The recognition test usually involves either a yes—no or a forced-
choice format. In the former, one item is presented at a time, and
participants must decide whether it is a target or a lure (see, e.g.,
Glanzer & Adams, 1990; Roediger & McDermott, 1995). In the
latter, items are presented in pairs consisting of one target and one
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lure, and the task is to choose the target (see, e.g., Glanzer &
Bowles, 1976; Kim & Glanzer, 1993). In both tasks, participants
are often asked to supply a confidence rating for each recognition
decision (Glanzer, Adams, Iverson, & Kim, 1993; Ratcliff, Mc-
Koon, & Tindall, 1994; Roediger & McDermott, 1995; Stretch &
Wixted, 1998). Similar examples are easy to find in other areas. In
studies of perception, yes—no tasks sometimes involve reporting
whether a stimulus is present, and forced-choice tasks involve
reporting which one of two (or more) stimuli is present (see, e.g.,
Creelman & Macmillan, 1979; Swets, Markowitz, & Franzen,
1969). In categorization experiments, participants might be asked
whether an object belongs to a particular category or asked which
of two categories it belongs to (for examples of the former, see
Hampton, 1979, 1998; McCloskey & Glucksberg, 1978; Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976; for examples of the
latter, see Gluck & Bower, 1988; Goldstone, 1996). In the area of
judgment and decision making, participants sometimes report con-
fidence in the truth of individual statements (e.g., “absinthe is a
liqueur”; Fischhoff, Slovic, & Lichtenstein, 1977; Wallsten &
Gonzélez-Vallejo, 1994), and sometimes there are multiple alter-
natives (“absinthe is (a) a liqueur or (b) a precious stone”; Fisch-
hoff et al., 1977; Koriat, Lichtenstein, & Fischhoff, 1980). Both
tasks are not only easy to find examples of but also are virtually
always used in tandem. If one of the tasks is being used to study
a particular area or phenomenon, the other is also likely being
used.

Analogues to the two tasks can be found outside the laboratory
as well. In our opening example, the yes-no task is essentially a
true—false test, and the forced-choice task is essentially a multiple-
choice test. As another example, imagine a physician assessing the
likelihood that a patient has each of two illnesses, A and B, that
occur in the population independently. That is, knowing that a
patient has A says nothing about whether the patient has B. Under
these conditions, the physician might assess the probability of A
and B to be 80% and 40%, respectively. Additional information
then becomes known, leading the physician to believe that the
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patient has either A or B, but not both. The task has changed from
yes-no (for each of A and B) to forced choice (A vs. B). How
confident would (and should) the physician now be that the patient
has illness A?

To clarify how we conceive of the relation between yes—no and
forced-choice tasks, as well as illustrate the normative response,
consider the medical diagnosis scenario in more detail. A and B are
assumed to be statistically independent, p(A) = 0.8, and
p(B) = 0.4. These probabilities (and their complements) are rep-
resented by the marginal probabilities in Figure 1. If there were
100 patients, 80 would be expected to have A, and 40 would be
expected to have B. Furthermore, each patient would belong to one
of four categories: Those who have (a) both A and B, (b) A but not
B, (¢) B but not A, or (d) neither A nor B. The independence
assumption allows for easily calculating the expected number of
patients in each category. One need only multiply the probabilities
of the respective events. For Category a, p(A) = 0.8, p(B) = 0.4,
and their product is 0.32. Thus, 32 of the 100 patients would be
expected to belong to the A&B category (Category a), and the
corresponding (joint) probability is shown in the upper left cell in
Figure 1. Analogous calculations show that the expected number
of patients in the other three categories is 48, 8, and 12,
respectively.

Now assume that the patient is known to belong to either the
A&~B category or the ~A&B category. That is, the patient has
either A or B, but not both. Belonging to the A&B category or to
the ~A&~B category is no longer a possibility. How confident
should the physician be that the patient has illness A (i.e., belongs
to the A&~B category)? There are 56 patients in the A&~B and
~A&B categories combined, and 48 of them belong to A&~B.
Hence, the probability is 48/56, or about 0.86. Similarly, the
probability that the patient belongs to the ~A&B category is 8/56,

B ~B
0.32 0.48 0.8
A
= p(A&B) = p(A&~B) =p(A)
0.08 0.12 0.2
~A
=p(~A&B) | =p(~A&-~B) = p(~A)
0.4 0.6
=p(B) =p(-B)

Figure 1. The medical diagnosis scenario (as described in the text) in
2 X 2 form. The marginal probabilities correspond to the probability of
illness A and illness B (and their complements) in a yes—no task. Patients
can belong to one of four categories: They can have (a) both A and B
(upper left cell), (b) A but not B (upper right), (c) B but not A (lower left),
or (d) neither A nor B (lower right). The resuiting (joint) probabilities in
each cell assume that A and B are statistically independent. In a forced-
choice task involving A and B, a patient can belong to only the A&~B
category or the ~A&B category: The patient has either A or B, but not
both. The other two categories—A&B and ~A&~B—are no longer pos-
sible. For the forced-choice task, then, confidence in A should increase
from 80% to 0.48/(0.48 + 0.08) = 86%. Similarly, confidence in B should
decrease from 40% to 0.08/(0.08 + 0.48) = 14%.

or about 0.14. In our running example, then, confidence in A should
increase from 80% to 86%, and confidence in B should decrease from
40% to 14%. The normative model is derived in the Appendix.

Thus, we view a yes-no task involving A and B to be one in
which all four above categories, or outcomes, are possible, at least
theoretically. For the sake of simplicity, we assume that A and B
are statistically independent, but our approach is not limited by this
assumption. We believe that the independence assumption holds
for many yes-no tasks, but there are undoubtedly cases where
knowing that A is true would influence, to some degree, belief in
B. Accordingly, in the Appendix, we present the normative model
without the independence assumption as well.

Furthermore, we view the prototypical forced-choice task in-
volving A and B to be one in which participants understand that
the A&B and ~A&~B categories have been eliminated, leaving
only A&~B and ~A&B. Again, this seems to capture many
forced-choice tasks, but there are situations where A and B are not
mutually exclusive and exhaustive. Our discussion assumes,
though, that A and B are independent in the yes-no task and are
mutually exclusive and exhaustive in the forced-choice task. More
formally, we assume that p(A|B) = p(A) and p(BJ|A) = p(B) in the
former task and that p(A|B) = p(B|A) = 0 in the latter.

To recap, despite widespread use of yes—no and forced-choice
tasks, surprisingly little is known about how confidence between
them is related. Furthermore, intuition—ours at least—does not
provide a clear gnide. In our running example, we do not think it
is obvious, despite the above normative analysis, that confidence
in A will increase in the forced-choice task relative to the yes-no
task. Indeed, we present and test three plausible psychological
models, one of which predicts an increase in confidence in A under
such circumstances, and two of which predict a decrease.

Much previous research has examined how confidence changes
on the basis of new information (see, e.g., Anderson, 1981; Ho-
garth & Einhorn, 1992). However, in such belief-updating tasks,
the new information consists of new evidence, and the competing
hypotheses do not change. In contrast, we are interested in situa-
tions where the new information is not new evidence in the usual
sense but information that two hypotheses formerly considered
independent are mutually exclusive and exhaustive. Furthermore,
the fact that the hypotheses change to mutually exclusive and
exhaustive also changes the set of competing hypotheses. When A
and B are independent, A’s competitor is not-A, and B’s compet-
itor is not-B. When A and B are mutually exclusive and exhaus-
tive, they compete directly with each other.

Research more closely linked to our topic was conducted by
Van Wallendael and Hastie (1990; Robinson & Hastie, 1985; Van
Wallendael, 1989). Suspects in a murder mystery were used as
mutually exclusive and exhaustive hypotheses, and various clues
were presented. After each clue, participants updated their confi-
dence that each suspect was guilty. The authors occasionally added
or dropped a suspect and examined how confidence changed.
Thus, the new information occasionally consisted of a change in
the hypothesis set, much like our current concern. However, the
hypotheses were always mutually exclusive, which resulted in a
fundamentally different problem than the one we examine. Fur-
thermore, the authors’ primary dependent measure was the sum of
confidence in the competing hypotheses, whereas we investigate
formal models for adjusting confidence.

The article is organized as follows. In the first part, we present
the normative model and three descriptive models of how confi-
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dence might change between yes—no and forced-choice tasks. In
the second part, we report two experiments indicating that two
plausible models—including the normative model-—can be ruled
out. Subsequently, we report results from computer simulations
that examine the effect of error in confidence judgments on the
models’ performance. We then discuss the relationship between
the normative model and the signal-detection interpretation of
confidence. In the final section, we summarize our contributions
and suggest future research.

Three Models for Changing Confidence Between Yes-No
and Forced-Choice Tasks

Consider two statements, or hypotheses, A and B, that are
independent. For example, one might be asked for confidence in
the truth of each of the following statements:

A. The U.S. population is greater than 250 million.

B. Plato was born before Socrates.

Under such conditions, knowing that, for example, A is true would
have no effect on confidence that B is true, which is what we mean
when we say that A and B are independent. Let c(A) and ¢(B)
represent confidence in A and B, respectively, when A and B are
independent, and let 0 < c(A), ¢(B) < 1. We use the term
confidence to denote how often the judge expects to be correct in
the long run. In our experiments, participants were instructed to
expect to be correct x% of the time when reporting x% confidence,
allowing us to make normative claims about how confidence
should change. Assume that c¢(A) = 0.8 and ¢(B) = 0.4 and that it
becomes known that A and B are mutuaily exclusive and exhaus-
tive: One of A and B is true, and one is false. How confident would
one now be that A is true? That B is true? We denote confidence
in A under these conditions by c(A,B), indicating confidence in A,
given that B is the sole alternative. Similarly, ¢(B,A) corresponds
to confidence in B, with A as its sole alternative. Following are
three descriptive models of ¢(A,B) as a function of ¢(A) and ¢(B).

Multiplicative Model

The normative model, demonstrated above, and derived in the
Appendix, is the following:

c(A,B) = c(A)(1 — [B])/

[c(A)(1 = [B]) + ¢(B)(1 - AD]. ()

To calculate ¢(B,A), simply switch ¢(A) and ¢(B) in Equation 1. An
important property of this model, relative to the others we present
below, is that c¢(A,B) is always more extreme than c¢(A) when c(A)
and ¢(B) are on different sides of 0.5. As we showed earlier, for
example, if c(A) and c(B) are respectively 0.8 and 0.4, c(A,B) = 0.86
and ¢(B,A) = 0.14. If c(A) is greater than 0.5, then ¢(A,B) ranges
from c(A) to 1 as ¢(B) ranges from 0.5 to 0. If ¢(A) is less than 0.5,
then c¢(A,B) ranges from c(A) to 0 as ¢(B) ranges from 0.5 to 1.

The multiplicative model we tested is a more general model
with one free parameter:

c(A,B) = c(A)(1 — BN

[c(A)1 = [B])” + c(B)"(1 = [AD) @

The parameter, w, is associated with each term involving c(B) and
determines the extent to which c(B) affects c(A,B) (holding c[A]
and ¢[B] constant). We expect w to vary between 0 and 1. When
w = 1, Equations 1 and 2 are identical. As w decreases, c(B) has
a smaller effect on ¢(A,B). When w = 0, ¢(B) has no effect on
c(A,B), which then equals c(A). Note that participants’ responses
are normative only when w = 1 in this model. Considerable
evidence indicates that nonfocal alternatives are often under-
weighted, so there is good reason to believe that w might be less
than 1 (see, e.g., Evans, 1989; Fischhoff & Beyth-Marom, 1983;
Klayman & Ha, 1987; McKenzie, 1994, 1998).

Because A and B in the forced-choice task are mutually exclu-
sive and exhaustive, ¢(A,B) and ¢(B,A) should (normatively) sum
to 1 (i.e., be additive). However, if w < 1, then confidence is not
additive (except in the special case where confidence in the yes—no
task, c[A] and c[B], happens to sum to 1). Additivity generally
decreases as w moves from 1. If w = 0 in our running example,
c(A,B) + c(B,A) = 0.8 + 0.4 = 1.2, indicating superadditivity.
More generally, if ¢(A) + ¢(B) exceeds 1 and w < 1, confidence
in the forced-choice task is superadditive. Similarly, if c(A) + c¢(B)
is less than 1 and w < 1, then confidence in the forced-choice task
is subadditive (i.e., sums to less than 1). The relationship between
underweighting the alternative and nonadditivity has been studied
empirically (McKenzie, 1998, 1999).

We often refer to ¢(A,B) rather than to both ¢(A,B) and ¢(B,A)
for simplicity’s sake, even though participants reported both val-
ues. Because of this, we usually refer to B as the alternative.
However, it should be kept in mind that A is the alternative when
reporting c(B,A).

Note that the normative model (Equation 1) and the multiplica-
tive model (Equation 2) can be written in a more convenient way
if the probabilities are expressed as odds. The relationship between
odds (O) and a corresponding probability (p) is O = p/(1 — p).
Thus, O, = c¢(A)(1 — c[A]) and O = c(B)/(1 — c[B]). Substi-
tuting these values into Equation 1 and rearranging terms yields

Oup = 04/03, (3)
which, in the more general form analogous to Equation 2, is

Oas = 0,/(0g)". 4

Linear Model

Another way that confidence could change is that the algebraic
difference between confidence in A and B in the yes—no task might
remain the same in the forced-choice task but sum to 1 in the latter
task. The following equation captures such a process:

c¢(A,B) = 0.5(c[A] + 0.5(1 — [B]). &)

In words, c(A,B) is the mean of ¢(A) and the complement of c(B).
If ¢(A) were 0.8 and c(B) were 0.4, ¢(A,B) would equal to 0.7, and
c(B,A) would equal 0.3. The algebraic difference between c(A)
and ¢(B) and between ¢(A,B) and c(B,A) is 0.4, but the latter
values sum to 1. Part of the motivation behind testing such a model
is that linear models often predict behavior well, even in tasks
where nonlinear or multiplicative judgments might be expected
(see, e.g., Dawes, 1979; Hoffman, 1960). Brehmer (1980) sug-
gested that people’s intuitive strategies might often be linear
because linear models are simple and perform well under a variety
of circumstances.
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Note that the linear model led to a decrease in c(A,B) relative to
c(A) in our rupning example, a result opposite to that of the
normative and multiplicative models. For the linear model, when-
ever ¢(A) and ¢(B) sum to greater than 1, the resuiting forced-
choice confidence values decrease. The model essentially takes
half the difference between 1 and the sum of c¢(A) and ¢(B) and
subtracts that amount from ¢(A) and ¢(B) to arrive at c¢(A,B) and
¢(B,A). When c¢(A) and ¢(B) sum to less than 1, forced-choice
confidence increases in an analogous manner. Both c¢(A,B) and
c(B,A) either decrease or increase together relative to their yes—no
counterparts, and by the same amount. This behavior is different
from that of the normative and multiplicative models, where
c(A,B) might increase relative to c(A) whereas c¢(B,A) decreases
relative to ¢(B).

The linear model we tested is a generalization of Equation 5
with one free parameter. It allows the coefficients to differ
from 0.5 but constrains them to sum to 1:

c¢(AB) = (1 — w/2)(c[A]) + W/2)(1 — [B]), 6)

and we expect w to vary between 0 and 1. When w = 1, note that
Equations 5 and 6 are equivalent. The smaller w is, the smaller the
impact that ¢(B) has on ¢(A,B), holding c¢(A) and c¢(B) constant. If
w = (, then ¢(B) has no impact, and c(A,B) = c(A). As with the
multiplicative model, one can interpret w in terms of the extent to
which the strength of the alternative is taken into account. In
addition, when w << 1, nonadditivity generally occurs: If c(A) +
¢(B) is less than 1, ¢(A,B) + ¢(B,A) is less than 1, and if c(A) +
c(B) is greater than 1, c(A,B) + c(B,A) is greater than 1. Despite
the general nonadditivity when w < 1, the difference between
c(A,B) and ¢(B,A) always equals the difference between c(A) and
(B).

Ratio Model

The simple form of our third model holds constant the ratio,
rather than the difference, between c(A) and ¢(B) and between
¢(A,B) and ¢(B,A), while forcing the latter values to sum to 1:

c(A,B) = c(A)/[c(A) + c(B)]. Q)

If ¢(A) = 08 and ¢(B) = 04, then ¢(A,B) = 0.667, and
¢(B,A) = 0.333. The 2-to-1 ratio of confidence in the yes-no task
is maintained in the forced-choice task, but confidence in the latter
task sums to 1. Equation 7 normalizes confidence in A and B. The
psychological appeal of this model is simply that the relative
confidence in A and B is held constant. If one were twice as
confident in A as in B in the yes—no task, then, according to this
model, one would be twice as confident in A as in B in the
forced-choice task. Similar models have been proposed by Tversky
and Koehler (1994; see also Koehler, 1996) in the context of
strength of evidence judgments and by Luce (1959) in the context
of choice frequencies.

Note that, like the linear model but unlike the multiplicative
model, ¢(A,B) decreased relative to ¢(A) in our running example.
The ratio model adjusts both ¢(A,B) and ¢(B,A) in the same
direction, just like the linear model. Relative to c(A) and c(B),
¢(A,B) and ¢(B,A) both increase (when c[A] + ¢[B] < 1) or both
decrease (when c[A] + c[B] > 1). Unlike the linear model,
however, ¢(A,B) and ¢(B,A) do not change by the same amount.
Instead, change is proportional to confidence in the yes-no task. In

the above example, ¢(A,B) decreased 0.133 relative to c(A),
whereas c(B,A) decreased 0.067 relative to c(B). The first change
is twice the second because c(A) is twice c(B).

The ratio model we tested is a more general form of Equation 7:

c(A,B) = c(A)/[c(A) + c(B)]". )

We expect w to vary between 0 and 1 and again interpret it as the
extent to which the strength of the alternative, c(B), is taken into
account or affects c(A,B). When w = 1, Equations 7 and 8 are
identical. At the other extreme, where w = 0, ¢(B) has no impact
on c(A,B), which would equal c(A). The smaller w is, the smaller
the impact that c¢(B) has on ¢(A,B), holding c(A) and ¢(B) constant.
Furthermore, to the extent that w differs from 1, additivity gener-
ally decreases (in the same manner as the linear model), but
Equation 8 nonetheless holds constant the ratio between c(A) and
c(B) when producing ¢(A,B) and c(B,A).

To summarize, we have presented a normative model (Equation
1) and three plausible descriptive models (Equations 2, 6, and 8)
for adjusting confidence in two hypotheses when they change from
independent to mutually exclusive and exhaustive. The descriptive
models are presented in Table 1 for reference. Each descriptive
model has one free parameter, facilitating comparisons of perfor-
mance. Furthermore, the free parameter in each model has a
straightforward psychological interpretation.

Overview of Experiments

It is easiest to provide an overview of our two experiments by
discussing the second one first. In the first part of Experiment 2,
participants reported confidence on a scale of 0 to 100 in the truth
of 60 general knowledge statements. Participants were told that
half the statements were true and half were false. In the second part
of Experiment 2, the same 60 statements were presented in 30
pairs, where it was known that one statement in each pair was true
and one was false. For each pair of statements, A and B, in the
second part, reported confidence in the first part corresponded to
c(A) and c(B), and reported confidence in the second part corre-
sponded to ¢(A,B) and c(B,A). At issue was how confidence in
each statement changed between the first part (a yes—no task) and
the second part (a forced-choice task).

Unlike Experiment 2, Experiment 1 controlled participants’
confidence in the first part (i.e., c[A] and ¢[B]). This allowed for
a wide range of c(A) and ¢(B) values that facilitated model testing
and eliminated the large between-participants variability in confi-
dence that is typical for general knowledge statements. Rather than
reporting c(A) and ¢(B), participants were given predetermined

Table 1
Three Descriptive Models
Model Equation
Multiplicative ¢(AB) = c(A)1 — (B
[c(AX1 — c[BD™ + c(B)*(1 — c[AD]
Linear c(AB) = (1 — wi2)(c[A]) + w/2(1 — c[B])
Ratio c(A,B) = c(AV[c(A) + c(B)]”

Note. c¢(A)and c(B) represent confidence at the yes—no stage (in A and B,
respectively). c(A,B) represents confidence in A when A and B are forced-
choice alternatives. w is a free parameter and determines the extent to
which ¢(B) affects ¢(A,B).
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values and told to imagine that these corresponded to their confi-
dence in the truth of various individual (unseen) general knowl-
edge statements. These confidence values were arranged in pairs
such that one corresponding unseen statement was true and one
was false. For example, one pair was 90/50, indicating (hypothet-
ically) 90% confidence that the first unseen statement was true
when presented individually and 50% confidence in the second
one. Participants then updated the two values given that it was now
known that one of the unseen statements was true and one was
false.

In both experiments, half the participants were told that c(A,B)
and ¢(B,A) must sum to 100% for each pair, and half were given
no such instructions. We included this manipulation because recent
studies have revealed that subjective probabilities can be nonad-
ditive, even for two mutually exclusive and exhaustive hypotheses
(McKenzie, 1998, 1999). As our discussion of the models indi-
cates, underweighting the strength of the nonfocal alternative leads
to nonadditive judgments. On the other hand, people do often
report additive probabilities, and in some cases (e.g., in decision
analysis or in the laboratory), confidence judgments in mutually
exclusive and exhaustive hypotheses are forced to sum to 100%.
Thus, there is reason to believe that the instructions will affect
additivity, and testing the models under only the additive or the
nonadditive condition would seem to us incomplete. It is possible
that the best model for describing behavior depends on whether or
not confidence is additive.

Experiment 1

Method

Participants were 78 students at the University of California at San
Diego who received partial credit for introductory psychology courses.
They were given a two-page booklet, the first page of which provided
instructions. Participants were to imagine that they had previously been
presented with 50 individual statements, such as “The population of the
U.S. is greater than 200 million” and “Socrates was born before
Sophocles,” and that they had reported how confident they were in the truth
of each. They were to think of their reported confidence in terms of
long-run frequencies. For example, they were to expect 90% of the state-
ments they had reported 90% confidence in to be true. They were then to
imagine that the 50 individual statements had been arranged in 25 pairs. In
each pair, one statement was true, and one was false. It was pointed out that
the two statements above could be such a pair because one was true and
one was false.

The second page presented 25 pairs of values, labeled A and B. Each
value was to be considered their confidence in the truth of an individual
statement. Participants did not see any actual statements, just their confi-
dence. They were to report new confidence (between 1 and 99) in each
statement, A and B, given that one was true and one was false. As with
confidence in the original statements, they were to expect x% of the
statements in which they reported x% confidence to be true.

Five possible values of confidence were used for each statement in each
pair: 10, 30, 50, 70, and 90. Every combination of these values was used,
resulting in 25 pairs. Half the participants were presented with the pairs in
a predetermined random order, and half were presented with the reverse
order. Furthermore, half the participants were told that their confidence in
A and B for each pair should sum to 100, whereas half were not.

Results

One outlier was eliminated from the group instructed to have
¢(A,B) and ¢(B,A) sum to 100, and one was eliminated from the

group given no such instructions, leaving 39 and 37 participants,
respectively. Criteria for exclusion are given below, where we
discuss individual-level analyses.

Group-level analyses. We first checked the distribution of the
c(A,B) and ¢(B,A) responses. Not surprisingly, responses tended
to fall on salient values on the 99-point scale: 67.0% and 74.9% of
the responses were either 1, 10, 20, 30,..., 90, or 99 for the
uninstructed and instructed groups, respectively (see also, e.g.,
Fischhoff et al., 1977). We also checked for a difference in
additivity between the two groups. As is usually done, we calcu-
lated the sum of c(A,B) and ¢(B,A) for each pair. The mean sum
was 101.8 for the uninstructed group and 100.1 for the instructed
group, #(74) = 1.61, p > .10, implying no difference in additivity.
Furthermore, neither value differs significantly from 100 (both
ps > .10). These results are typical, and the usual conclusion is that
confidence is additive when there are two mutually exclusive and
exhaustive hypotheses (Robinson & Hastie, 1985; Teigen, 1983;
Tversky & Koehler, 1994; Van Wallendael, 1989; Van Wallendael
& Hastie, 1990; Wallsten, Budescu, & Zwick, 1993). However,
McKenzie (1998) argued that mean summed confidence is at least
sometimes inappropriate for measuring additivity. This might ap-
pear paradoxical, but consider the following extreme possibility:
One could be 0% confident in each alternative composing one pair
and 100% confident in each alternative in another pair. Mean
summed confidence across the two pairs is 100%, but it would be
misleading to regard these confidence reports as additive. (Mean
summed confidence does, however, reveal whether there is an
overall bias toward superadditivity or subadditivity.) A more ap-
propriate measure under the current circumstances is to calculate,
for each pair, the absolute deviation between 100 and the sum of
confidence in the two alternatives. The greater the mean absolute
deviation across the 25 pairs, the greater the nonadditivity. This
measure revealed a clear difference between the groups, with the
uninstructed group exhibiting a larger mean absolute deviation
than the instructed group: Ms = 15.9 versus 0.2, #(74) = 9.6, p <
.001. Thus, the groups differed in 2 meaningful way for testing our
models.

The left side of Figure 2 shows the results for each of the three
models for the uninstructed group. The top left graph shows the
relation between mean reported confidence (divided by 100) and
the predictions of the multiplicative model. The predictions were
obtained through fitting the multiplicative model to the ¢(A,B) and
¢(B,A) values by adjusting w until the sum of squared deviations
between the predicted and observed values was minimized. A
quasi-Newton method minimization algorithm described by
Fletcher (1972) was used to find the optimum value of w. There
are 50 data points in the panel, corresponding to the 50 mean
c(A,B) and c(B,A) values (25 pairs) reported by participants,
plotted against the model’s predictions. The identity line indicates
where all the data points would lie if the model predicted partic-
ipants’ confidence perfectly. The panel also indicates the best-
fitting w parameter, 0.54, for the least squares fit of the multipli-
cative model. That w is less than 1 indicates that c(A) had a larger
impact than c¢(B) when reporting ¢(A,B)—and that ¢(B) had a
larger impact than c(A) when reporting c(B,A)—relative to the
normative model. We expected w to vary between 0 and 1, but we
did not constrain the parameter to this range when fitting the
models. Listed below w is the percentage of variance accounted for
by the multiplicative model. The value of 95.7 indicates that the
multiplicative model fit the data quite well.
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which forced-choice confidence was affected by confidence in the nonfocal alternative.

Recall that the multiplicative model with w = 1 is equivalent to
the normative model. We found that the multiplicative model (with
w = 0.54) accounted for significantly more variance than the
normative model: F(1, 49) = 1334, p < .05.

The middle left panel in Figure 2 shows the linear model’s

results for the uninstructed group

. According to this model, con-

145

fidence in the alternative was underweighted (because w < 1).
Relative to the multiplicative model, variance accounted for was
somewhat worse.

Note also that, unlike the multiplicative model, the linear model
tended to overpredict low confidence values and underpredict high
ones. That is, judgments tended to be more extreme than the linear
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model predicted. This systematic bias might lead one to think that
the model is fundamentally wrong, but, as we discuss later in the
computer simulation section, bias is misleading if one makes the
reasonable assumption that there is random error in participants’
reported confidence. Error makes the linear and ratio models
biased even if they are correct. In contrast, the simulations show
that, for the models and conditions investigated here, variance
accounted for is useful for determining which model is correct
even in the presence of nonnormal random error. Accordingly,
though we sometimes mention bias when reporting results, we
emphasize variance accounted for when determining which mod-
els can and cannot be rejected.

The ratio model, shown in the bottom left panel, accounted for
slightly less variance than the linear model, and considerably less
than the multiplicative model. The w of 0.60 indicates that the
alternative was underweighted. Note that the bias is in the same
direction as that of the linear model: Confidence was more extreme
than predicted by the model.

The three panels on the right side of Figure 2 show the results
for the group given the additivity instructions. As can be seen, the
linear model accounted for the most variance, although judgments
were again more extreme than predicted by the model. Note also
that w = 1, indicating that the instructions led participants to
weight c(A) and ¢(B) equally, according to the linear model.
Surprisingly, this means that the best fitting model for this group
is an equal-weighted linear model (Equation 5). The other two
models still resulted in ws considerably less than 1, though. Fur-
thermore, the multiplicative model’s bias was in the direction
opposite to the other two: The model tended to underpredict low
confidence and overpredict high confidence. The multiplicative
model again accounted for significantly more variance than the
normative model (p < .05).

Comparing results between the groups, it can be seen that each
mode’s w moved closer to 1 with additivity instructions, indicating
that ¢(B) had a larger impact on c¢(A,B), and that c(A) had a larger
impact on ¢(B,A). The additivity instructions led the linear model
to account for more variance and led the multiplicative and ratio
models to account for less variance.

Individual-level analyses. We also fit the models at the indi-
vidual level, resulting in a percentage of variance accounted for
and a w for each participant. Participants were eliminated if vari-
ance accounted for was negative for all three models. (Negative
variance accounted for occurs when the best fitting model results
in greater error than simply using a constant—the mean—to pre-
dict confidence. Our models have no constants.) As mentioned,
this occurred for 2 (out of 78) participants, one in each group.
These occurrences were rare and extreme, and we have few qualms
about eliminating them for present purposes.

Table 2 shows the mean w and variance accounted for across the
individual-level analyses for each model and group. Consider first
the uninstructed group, shown on the left side of the table. The
multiplicative model accounted for significantly more variance
than both the linear and ratio models (both s > 4.3, ps < .001),
which did not differ from each other (p = .29). Also of interest is
that, out of the 111 w values for this group (37 participants X 3
models), only 8 were outside the expected 0—1 range, with 5 less
than O and 3 greater than 1. (One can interpret w > 1 as over-
weighting the nonfocal alternative.) Aside from one participant
who had a relatively large negative w for all three models, the
largest departure from the 01 interval was only 0.06.

Table 2
Experiment 1: Mean Results for the Individual-Level Analyses

Uninstructed group Instructed group

Model w VAF w VAF
Mulitiplicative 0.56 80.9 0.83 72.5
Linear 0.58 75.0 1.00 80.7
Ratio 0.59 744 091 73.1

Note. VAF corresponds to percentage of variance accounted for; w = the
degree to which forced-choice confidence was affected by confidence in
the nonfocal alternative.

The right side of Table 2 shows the results for the instructed
group. The linear model accounted for more variance than both the
ratio and multiplicative models (ps < .015), which did not differ
from each other (+ < 1). In addition, of the 117 w values in this
group (39 participants X 3 models), only 6 fell outside the ex-
pected 01 range. All 6 values were greater than 1, but the largest
was only 1.08. Also of interest is that the w value for the linear
model was 1.00 for 33 of the 39 participants in this group.

Relative to the group-level analyses (Figure 2), these individual-
level analyses reveal less variance accounted for, but rank order in
terms of performance largely remained the same. Note also that
each mean w in Table 2 is virtually identical for each model and
group to its counterpart in the group-level analyses.

Table 3 shows for each group the percentage of participants
whom each model fit best as measured by variance accounted for.
We included these analyses because, though the models might
differ by only a small amount in terms of mean variance accounted
for, one model could nonetheless provide a better fit for every
participant. The first column of numbers reveals that, for the
uninstructed group, the multiplicative model accounted for the
most variance for 81.1% of the participants. For the instructed
group, Table 3 indicates that the linear model was the winner.
These results again largely reflect the group-level analyses.

Qualitative analyses. There are four data points that provide
critical tests between the multiplicative model and the other two.
For the 70/10 and 10/70 pairs presented to participants, the mul-
tiplicative model predicts that new confidence corresponding to 10
will decrease, whereas the linear and ratio models predict an
increase. For the 90/30 and 30/90 pairs, the multiplicative model
predicts that new confidence corresponding to 90 will increase,
whereas the linear and ratio models predicts a decrease. (These
critical tests arise when c[A] and ¢[B] are on different sides of 50
and sum to less than or greater than 100, as in our 80/40 running
example.) At the group level, the multiplicative prediction was
correct all four times for the uninstructed group, and the linear/
ratio prediction was correct ail four times for the instructed group.
Individual-level results revealed the same pattern: Uninstructed
participants reported changes in confidence on the critical items in
a manner consistent with the multiplicative model 2.7 times out
of 4, on average, whereas the instructed participants did so only 1.1
times, #(74) = 5.7, p < .001. These qualitative findings are
consistent with the model-fitting results in that the multiplicative
model described the uninstructed group best and the linear model
described the instructed group best.
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Table 3
Experiment 1: Percentage of Participants in Each Group for
Whom Each Model Accounted for the Most Variance

Model Uninstructed group Instructed group
Multiplicative 81.1 359
Linear 16.2 64.1
Ratio 2.7 0.0
Discussion

The results of Experiment 1 allow us to effectively rule out two
otherwise plausible models. First, the normative model, with no
free parameter, accounted for significantly less variance than the
multiplicative model, where the best fitting free parameter was less
than 1. (The models are equivalent when w = 1 in the multipli-
cative model.) In particular, confidence in the nonfocal alternative
had suboptimal impact in the forced-choice task. Second, the ratio
model was consistently weak, accounting for relatively low vari-
ance across groups. Virtually no participants were fit best by this
model.

The multiplicative model accounted for the most variance for
the uninstructed group, but the linear model accounted for the most
variance for the instructed group. These results were consistent
across group- and individual-level analyses. They were also con-
sistent with analyses based on items where the two models made
qualitatively different predictions. The qualitative findings imply
that the linear model is not doing well merely because it is robust
(i.e., able to account for high variance even if the model is wrong).
Instructions appear to have influenced the process used to update
confidence. Also of interest is that, for the instructed group, the
best fitting w parameter was 1 for the linear model, indicating that
an equal-weighted linear model performed best in that group
(Dawes & Corrigan, 1974; Einhorn & Hogarth, 1975).

The additivity instructions affected not only additivity and
which model fit best but the w parameter as well. Each model’s
parameter moved closer to 1 with the instructions, as expected.
Furthermore, the actual range of the w parameter in the individual-
level analyses was largely within the expected range for each
model and group. These findings lend credence to the validity of
the parameter in each model.

Our data indicate that the multiplicative and linear models
cannot be ruled out, which is not to say that either model is correct.
Other models with the same number of free parameters may fit the
data as well, perhaps better. Distinguishing between descriptively
accurate models is nontrivial because even models with the same
number of free parameters can differ in their inherent flexibility
(Myung & Pitt, 1997). Thus, conservatively, the contribution of
Experiment 1 is to help reduce the field of viable candidates.
Because both the multiplicative and linear models are conceptually
simple and descriptively accurate—much more accurate than the
normative model, for example—they seem worthy of further
consideration.

Arguably, however, it is premature to completely reject the
alternative models because Experiment 1 was largely hypothetical
for participants. They did not report confidence in the yes—no task,
only the forced-choice task. Indeed, participants did not see any
hypotheses or statements, only numbers. It could be that the
relation between confidence in yes-no and forced-choice tasks

differs when the judgments are inspired by true, rather than hypo-
thetical, uncertainty. In Experiment 2, participants reported confi-
dence in the truth of actual general knowledge statements pre-
sented in both yes-no and forced-choice format.

Experiment 2
Method

Participants were 100 students from the same population as in Experi-
ment 1. The experiment took place on computer. In the first part, partici-
pants reported confidence in the truth of 60 randomly ordered general
knowledge statements that covered five different area: the arts, history,
science, sports, and geography. There were approximately equal numbers
of statements from each category. A range of difficulty was sought, but the
statements were not representatively sampled (Gigerenzer, Hoffrage, &
Kleinbolting, 1991; Juslin, 1994). Participants were told that half the
statements were true and half were false. An example of a true literature
statement is “Jonathan Swift wrote Gulliver's Travels,” and an example of
a false history statement is “Thomas Jefferson was the second U.S. pres-
ident.” As in Experiment 1, reported confidence was defined in terms of
long-run accuracy. Participants were to expect x% of the statements in
which they reported x% confidence to be true.

In the second part, the 60 statements were arranged in 30 pairs. For each
pair, one statement was trye and one was false, and participants were told
this. This information was also present on the screen the entire second part.
Participants were presented with pairs of statements labeled A and B, and
they reported confidence in the two statements contiguously. All partici-
pants saw the same 30 pairs, though in different random orders. Statements
within a pair were from different content areas, with only a few exceptions.
Participants were not shown their previously reported confidence in the
individual statements. As in Experiment 1, half the participants were
instructed to have their confidence for each pair of statements sum to 100,
and half were not.

Results

On the basis of the same criteria used in Experiment 1, we
eliminated one participant in the uninstructed group and 2 in the
instructed group, leaving 49 and 48 participants, respectively. In
addition, participants were allowed to respond with values be-
tween O and 100 in this experiment, but 0 and 100 were recoded
to 1 and 99 because some models we tested cannot accommodate
certainty.

Group-level analyses. Even more so than in Experiment 1,
responses tended to fall on the salient scale values: 87.8%
and 91.4% of the uninstructed and instructed groups’ c(A,B) and
c(B,A) responses were either 1, 10, 20, .. ., 90, or 99. We again
checked to see if instructions affected additivity. As before, mean
summed confidence did not differ between the uninstructed and
instructed groups, Ms = 102.7 and 100.4, respectively, #95) =
1.70, p = .09; but mean absolute deviation between 100 and
summed confidence was different, Ms = 6.9 vs. 2.1, respectively,
#(95) = 3.18, p = .002. The effect of instructions was weaker than
in Experiment 1, where the uninstructed group was less additive
than its current counterpart and the instructed group was more
additive.

The three panels on the left side of Figure 3 show the group-
level results (predicted vs. observed values) for the uninstructed
group. The multiplicative model accounted for the most variance
(91.1%). That w was less than 1 for this model indicates that ¢(B)
had less impact on c(A,B)—and that c(A) had less impact on
c(B,A)—than prescribed by the normative model. The ratio model
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Figure 3. Experiment 2: The models’ performance for the group without additivity instructions (left side) and
for the group with additivity instructions (right side). Plotted is participants’ mean confidence against each
model’s predictions. VAF = variance accounted for; w = the degree to which forced-choice confidence was

affected by confidence in the nonfocal alternative.

accounted for the least variance. Though not shown in Figure 3,
the normative model accounted for significantly less variance than
the multiplicative model (p < .05).

The right side of Figure 3 tells a similar story for the instructed
group. The multiplicative model accounted for the most variance
and the ratio model the least. As in Experiment 1, the additivity
instructions increased w in the three models. The linear model’s w

was again very close to 1 for the instructed group, indicating that,
according to this model, c(A) and ¢(B) played roughly equal roles
in determining c¢(A,B) and ¢(B,A). The other two models indicate
otherwise, however. The normative model again accounted for
significantly less variance than the multiplicative model (p < .05).

Consistent with the relatively small effect of instructions on
additivity, differences in the models’ performance between the
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groups were small, though the directions of the effects were largely
consistent with those of Experiment 1. The multiplicative model
accounted for less variance with the additivity instructions,
whereas the linear and ratio models accounted for slightly more
variance.

Individual-level analyses. The mean results of the individual-
level analyses are shown in Table 4. For the uninstructed group,
the ratio model accounted for less variance than both the linear and
multiplicative models (s > 3, ps < .01), which did not differ from
each other (¢ < 1). Of the 147 w values for this group (49
participants X 3 models), 13 fell outside the 0-1 range (11 were
greater than 1), but only 5 values were more than 0.05 outside the
interval.

For the instructed group, the linear model accounted for more
variance than the other two models ( ps < .05), which did not differ
from each other (r < 1). Of the 144 w values, only 7 fell outside
the 0-1 interval. All 7 were greater than 1, but the largest
was 1.04.

Relative to the group level, the individual-level analyses re-
vealed lower variance accounted for. In terms of the models’
performance relative to each other, the only systematic difference
across level of analysis was that the linear mode] performed better
at the individual level for both groups. Whereas, at the group level,
the multiplicative model accounted for the most variance for both
groups, it tied the linear model at the individual level for the
uninstructed group and was outperformed by the linear model for
the instructed group.

Table 5 shows the percentage of participants whom each model
fit best according to variance accounted for. For the uninstructed
group, the linear and multiplicative models each fit about half the
participants best, and for the instructed group, the linear model did
somewhat better in terms of variance accounted for. The ratio
model’s performance was again weak.

Qualitative analyses. Qualitative tests were more complicated
in this experiment because participants were not supplied with
¢(A) and ¢(B) as in Experiment 1. At the group level, there were
eight critical items in each group (coincidentally). That is, there
were eight items where confidence in the yes—no stage led the
multiplicative model to make a qualitatively different prediction
from the linear and ratio models. The required conditions were that
¢(A) and ¢(B) be on different sides of 0.5 and sum to less than 0.9
or more than 1.1. (Confidence had to sum to considerably less
than 1 or more than | because the linear and ratio models predict
no change in confidence to the extent that the sum of ¢[A] and ¢[B]
is 1.) Of the eight critical items in each of the uninstructed and the
instructed groups at the group level, four were consonant with the

Table 4
Experiment 2: Mean Results for the Individual-Level Analyses

Uninstructed gronp Instructed group

Model w VAF w VAF
Muiltiplicative 0.67 56.3 0.77 475
Linear 0.87 56.3 0.98 542
Ratio 0.75 52.1 0.86 476

Note. VAF corresponds to percentage of variance accounted for; w = the
degree to which forced-choice confidence was affected by confidence in
the nonfocal alternative.

Table 5
Experiment 2: Percentage of Participants in Each Group for
Whom Each Model Accounted for the Most Variance

Model Uninstructed group Instructed group
Multiplicative 449 375
Linear 46.9 47.9
Ratio 8.2 14.6

multiplicative model’s prediction, and four were consonant with
the linear and ratio models’ prediction. Like the individual-level
model fitting results, these qualitative analyses revealed evidence
for both the multiplicative and linear models.

Discussion

The results of the current experiment, which had participants report
confidence in each of the yes—no and forced-choice tasks, are simi-
lar in important respects to those of Experiment 1, where confi-
dence judgments were hypothetical. The normative model accounted
for less variance than the multiplicative model in both groups, pro-
viding evidence that the normative model does not describe change
in confidence well. Furthermore, the ratio model’s performance was
weak across groups, consistent with Experiment 1.

At the group level, the multiplicative model accounted for the
most variance for both the uninstructed and instructed groups. At
the individual level, however, the linear model did as well as the
multiplicative model for the uninstructed group and outperformed
the multiplicative model for the instructed group. Thus, as in
Experiment 1, the linear model accounted for the most variance at
the individual level for the instructed group, with an equal-
weighted model performing best. The only difference between the
experiments is that the multiplicative model was not the clear
winner for the uninstructed group. As we show in the Monte Carlo
simulation section, however, the linear model can account for
almost as much variance as the multiplicative model, even when
the latter is correct. Thus, the strong showing of the linear model
may be partly attributable to its inherent flexibility (Myung & Pitt,
1997). Generally, though, the results are consistent across the two
experiments in that the multiplicative and linear models appear to
be the only viable models, at least among those tested.

Other results are also consistent with the previous experiment:
Forced-choice confidence judgments were less additive for the
uninstructed group, and this was reflected in the w parameter,
which was further from 1 in this group, for each model. That w was
less than 1 indicates that the strength of the nonfocal alternative
was underweighted. Finally, the actual range of the parameter in
the individual-level analyses was again largely as expected.

Bender (1998) reported an experiment intended to generalize a
judgment model proposed by Walisten and Gonzélez-Vallejo
(1994). Doctoral students in history and English literature saw
general knowledge statements pertaining to both subject areas. In
the first part of the experiment, participants rated their confidence
in the truth of individual statements on a 4-point scale. In the
second part, the same statements were presented in pairs, with one
statement true and one false. In addition, one statement in each pair
came from one subject area, and the second statement came from
the other. Participants selected the statement they thought was the
true one in each pair. Note that the first part is a yes—no task and
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the second part is a forced-choice task using the same statements,
just like our design. Furthermore, having the paired statements in
the forced-choice task come from different domains is also similar
to our experiment and underscores the independence of the state-
ments in the yes—no phase. However, Bender’s participants did not
give confidence ratings in both tasks, which is our focus. None-
theless, an interesting conclusion from Bender’s experiment is that
participants did not compare confidence in the two statements
when making their choice in the forced-choice task but instead
relied on their confidence in the statement from the domain they
were more familiar with. If one assumes that the statement from
the familiar domain is the focal statement and the statement from
the unfamiliar domain is the nonfocal alternative, then Bender’s
result accords well with one of our consistent findings: Confidence
in the nonfocal alternative had less than optimal impact on behav-
ior in the forced-choice task.

Simulation Analysis of the Role of Error in Judgment

The model fitting resulis were based on least squares fits of the
multiplicative, linear, and ratio models to the forced-choice con-
fidence ratings. Such fits assume that deviations between the
observed forced-choice confidence ratings and the predictions of
the true model are distributed normally and with equal variance.
Because the dependent measure in this case is a proportion, which
ranges from O to 1, one can be fairly sure that error is not
accurately described by a normal distribution, which ranges from
—o to +%,! One solution to this problem is to transform the
independent and dependent measures from probabilities to log
odds (which range from —co to +). This is a natural way to fit the
multiplicative model, which, as we demonstrated earlier, can be
easily expressed in terms of odds (Equation 4). When we fit the
multiplicative model in log odds form, however, the results were
very similar to those of the model in its original form. In addition,
the linear and ratio models seem rather unnatural when converted
to odds form. We therefore decided to leave the data untrans-
formed and to simulate error in a more realistic way. In this
section, we describe the results of simulations that investigated
whether the (incorrect) assumption of Gaussian error in our least
squares fits biased our conclusions in any way.

Having rejected Gaussian error, we considered the important
issue of how to model error variance more accurately. We selected
a distribution that was appropriately bounded and that mimicked
(as described in Footnote 1) our real data. The beta distribution
satisfied both requirements. The beta distribution is defined by two
parameters, a and b, and its range is 0 < p < 1, the appropriate
interval for our purposes. For integer values of a and b, the beta
distribution is given by [(a + »)(a!b})I(1 — p)*~'(p)*~ ! and has
a mean of a/(a + b) and a variance of ab/[(a + b)*(a + b + 1)].
For our simulations, we fixed the sum of a and b at 10 because that
generated sufficient error variance such that even the true model
accounted for only about 50% of the variance when fit to the
simulated data. (This was the approximate percentage of variance
accounted for at the individual-participant level in Experiment 2.)
Figure 4 shows representative beta distributions for means
0f 0.5, 0.7, and 0.9 (with the sum of a and b fixed at 10). When the
true mean is 0.5, the distribution of values is symmetric and
bell-shaped (upper panel). As the true mean approaches 1 (see
middle and bottomn panels), the variance of the distribution de-
creases and its shape becomes more skewed. Distributions for

means of 0.3 and 0.1 would be mirror reflections of those for 0.7
and 0.9.

An advantage of the simulations is that we were able to program
a “true” model to generate hypothetical data with error distributed
according to the beta distribution, which is probably a closer
approximation to the truth than Gaussian error. We then fit the
three models using least squares (with the incorrect assumption of
Gaussian error) to the simulated data to see whether the true model
accounted for the most variance.

A simulation consisted of the following steps. First, a true model
was selected (e.g., the ratio model with w set to 1). Second, 81
pairs of true c(A) and ¢(B) values were used to generate c(A,B)
and ¢(B,A) values from the true model. These 81 pairs consisted of
the factorial combination of the numbers 0.1 to 0.9 in steps of 0.1.
Third, for a given pair of true ¢(A) and c(B) values (e.g., 0.9
and 0.5), actual values to be substituted into the true model were
selected from a beta distribution with the appropriate mean. Thus,
if the true c(A) value was 0.9, a value to be substituted into the true
model was drawn from a beta distribution witha = 9 and b = 1.
If the true ¢(B) value was 0.5, a value to be substituted into the true
model was drawn from a beta distribution witha = Sand b = 5.
Thus, although the true c(A) and ¢(B) values might be 0.9 and 0.5,
the values substituted into the model might be 0.94 and 0.35.
Finally, after the true model generated c(A,B) and c¢(B,A), these
values were replaced by drawing from a beta distribution with the
closest mean. Thus, for example, in the ratio model, if c(A) and
c(B) were 0.94 and 0.35, respectively, then c(A,B) would
equal 0.73. However, the final c(A,B) value would not be 0.73 but
a value drawn from a beta distribution with a mean of 0.7. In short,
we introduced error in confidence reports at both the yes—no and
the forced-choice stages.

!'We examined the assumption of Gaussian error primarily through
analyzing quantile-quantile (qq) plots, which provide a check on whether
the residuals (i.e., the difference between observed and predicted values)
are normally distributed. The two quantiles in such a plot consist of
standardized values from the data set (in this case, the residunals) and a
corresponding set of values computed from the hypothesized distribution
(in this case, the normal distribution). The normal quantiles are calculated
by computing the inverse phi function of (i — .5)/n, where i is the ith
largest residual out of # total residuals. To produce a qq plot, the rank-
ordered standardized residual values are plotted against these normal
quantile values. If the residuals are normally distributed, a straight line plot
should be evident. Large and systematic deviations from a straight line
indicate that the assumption of Gaussian error is incorrect. Identifying
systematic error in a qq plot is something of an art because deviations may
appear to be systematic even when the underlying error distribution is
Gaussian. Nevertheless, we examined these plots for additional informa-
tion about the form of underlying error. The qq plots for our individual
participants did not deviate noticeably from what would be expected given
true Gaussian error (although true error was presumably non-Gaussian). In
most cases, the qq plots from Experiment 1 followed a fairly tight-fitting
sinusoidal pattern around the best fitting straight line. For some partici-
pants, however, the qq plot was a shallow U shape. (Plots for individual
participants from Experiment 2 were less informative because participants
were not required to use the full range of confidence ratings during the
yes—no phase.) Similar kinds of deviation are often observed when qq plots
are created based on Gaussian error. The fact that the gqq plots from
Experiment 1 were not especially deviant suggests that the assumption of
Gaussian error in our least squares fits may have been a sufficiently close
approximation to avoid arriving at misleading conclusions.
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The simulation described above was run 30 times (represent-
ing 30 participants) for each of the three models. Thus, for 30 of
the simulated participants, the linear model was the true model
underlying the data; for another 30, the ratio model was the true
model, and for another 30 the multiplicative model was the true
model. In every case, all three models were fit to the simulated
data using the same method we used to fit the real data.?

The top of Table 6 shows the results of the fits for the simulated
data when w = 1 for each true model (recall that the multiplicative
model is normative when w = 1), and the bottom shows the results
when w = 0.7. Five important conclusions emerged from the
simulations. First, variance accounted for faithfully reflected the
true underlying model in each case. The wrong underlying model
never accounted for the most variance. This is why we relied on
variance accounted for when discussing which models were and
were not ruled out by our experiments.

Second, we mentioned earlier that a model’s bias did not help
determine which model was correct. In both of our experiments,
the linear and ratio models were biased in that participants’ con-
fidence was more extreme than predicted by these models. This
was true at both the group level (see, e.g., Figure 3) and the
individual level of analysis. Though not reported in Table 6, the
simulations showed that, when error follows a beta distribution,
the linear and ratio models are biased even when they are the
correct models. The multiplicative model is the least biased
whether or not it is correct. This is why we did not emphasize bias
in our earlier discussions.
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Figure 4. Representative beta distributions for means of 0.50, 0.70,
and 0.90 (with the sum of the a and b parameters fixed at 10).

Table 6
Simulation Results

True (simulated) model with w = 1.0

Muitiplicative Linear Ratio
Fitted model w VAF w VAF w VAF
Multiplicative 0.90 50.0 0.68 29.0 0.71 29.0
Linear 0.99 45.0 1.02 54.0 1.02 48.0
Ratio 0.95 44.0 0.93 48.0 1.00 51.0

True (simulated) mode!l with w = 0.70

Multiplicative Linear Ratio
Fitted model w VAF w VAF w VAF
Multiplicative 0.68 52.0 043 420 0.40 39.0
Linear 0.78 48.0 0.71 54.0 0.68 50.0
Ratio 0.77 48.0 0.68 51.0 0.67 51.0

Note. VAF refers to percentage of variance accounted for; w = the
degree to which forced-choice confidence was affected by confidence in
the nonfocal alternative.

Third, Table 6 shows that the models are not equally able to
mimic each other. When the true model is the linear or the ratio
model, the multiplicative model offers a very poor fit, suggesting
that it could be easily ruled out if either the linear or the ratio
model were correct. By contrast, when the multiplicative model is
the true model, it provides the best fit, but the linear and ratio
models are not far behind. This indicates that it might be more
difficult to rule out the linear and ratio models based on goodness-
of-fit measures alone if the multiplicative model is correct. These
results underscore the point that models with the same number of
free parameters may differ in their inherent flexibility (Myung &
Pitt, 1997).

Fourth, least squares fits assume error-free independent vari-
ables (c[A] and ¢[B] in the current context). This assumption
seems reasonable in Experiment 1 but not in Experiment 2. How-
ever, the simulations introduced random error into the independent
variables as well as the dependent variables (c[A,B] and ¢[B,A]),
so the conclusions we drew from Experiment 2 based on the least
squares analysis appear valid (again assuming the beta distribution
is reasonable). Furthermore, additional simulations (not reported
here) were performed using error-free independent variables, and
the results were essentially identical. Note that this is consistent
with our empirical findings in that the pattern of results is similar
in Experiments 1 and 2.

Finally, the top of Table 6 shows that when participants are
normative and error variance follows a beta distribution, the esti-
mated value of w from the fit of the multiplicative model is

2The qq plots for the simulated data (see Footnote 1) were also in-
spected to see whether deviations from a straight line were similar to the
deviations observed in the real fits. These plots were generally indistin-
guishable from those produced by our participants and by those based on
true Gaussian error (which we also simulated for comparative purposes).
Thus, the beta distribution offered a conceptually appealing model of error
that was also close enough to Gaussian error so that the least squares fits
were able to identify the true underlying model.
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somewhat less than 1 (the mean was 0.9 for our 30 simulated
participants). However, if the beta distribution offers a reasonable
approximation of error, it seems unlikely that error alone can
account for the much lower values of w we observed in our
experiments. We also simulated 30 additional normative partici-
pants without error in the yes—no confidence ratings (analogous to
Experiment 1). Otherwise, the simulation was identical to that
described above. The mean variance accounted for by fitting the
multiplicative model to the simulated data in this case was 83.2%
(similar to the actual value observed in Experiment 1), and the
mean estimated value of w was 1.04. In other words, error in
forced-choice ratings alone does not appear to put any downward
pressure on w. Because forced-choice ratings were the only source
of error in Experiment 1 and the w values in the experiment were
nonetheless low, this is additional evidence for rejecting the nor-
mative model as a viable descriptive model.

Signal-Detection Theory and the Normative Model

In the perception and memory literatures, the theoretical frame-
work most commonly used to interpret confidence ratings in
yes-no and forced-choice tasks is signal-detection theory. In this
section, we consider the relationship between the normative model
and the signal-detection interpretation of confidence. The applica-
tion of signal-detection theory to yes—no and forced-choice tasks
has been discussed by Luce (1963) and Ferrell and McGoey
(1980). However, the connection between this earlier work and our
normative model may not be obvious to most readers. The purpose
of this section is to clarify the connection.

Consider first a yes—no task. Typically, half the items on a
yes—no test should receive a yes response (e.g., the true statements
on a general knowledge test), and half should receive a no response
(e.g., the false statements). A signal-detection interpretation of
performance assumes that responses are made on the basis of the
subjective strength of evidence associated with a test item. The
true statements on a general knowledge test, for example, generate
a higher subjective value on this scale (i.e., a higher subjective
sense that they are true), on average, than the false statements do.
Both the true and the false statements are assumed to generate
variable strength of evidence values across items. Thus, for exam-
ple, some true statements do not generate a strong sense that they
are true, although most do. Similarly, some false statements gen-
erate a strong (though incorrect) sense that they are true, although
most do not. The strength of evidence values associated with the
two item classes (e.g., true and false statements) can be of any
form but are typically assumed to be normally distributed, with the
mean of one distribution falling higher on the evidence axis than
the mean of the other. This situation is depicted in Figure 5. To
solve the task, participants are assumed to set a decision criterion
somewhere along the strength of evidence axis such that items
falling above the criterion receive a true (or yes) response and
items falling below receive a false (or no) response. Note that,
according to this model, some true statements (those generating a
strength of evidence value falling below the criterion) are mistak-
enly judged to be false, whereas some false statements (those
generating a strength of evidence value falling above the criterion)
are mistakenly judged to be true.

What accounts for the varying degrees of confidence across
items? According to this model, the higher an item falls on the
evidence axis, the more likely it is to be true (and the greater the

False Statements

N

True Statements

N

Xs Xa
Subjective Strength of Evidence

Figure 5. A signal-detection view of where two hypothetical statements,
A and B, fall on the continuum of subjective strength of evidence. The
curve on the left represents the assumed distribution of the subjective
strength for false statements, and the curve on the right represents the
assumed distribution of the subjective strength for true statements. x
corresponds to a hypothetical strength of evidence value.

confidence in a yes response). Consider a hypothetical statement
that generates a strength of evidence value that falls at the point
labeled x, in Figure 5. A few false statements generate that level
of subjective evidence, but many more true statements do. In fact,
at that point, the height of the true distribution is 4 times that of the
false distribution. More formally, the likelihood ratio, p(x,]A is
true)/p(x 4 |A is false) is equal to 4 (i.e., L, = 4). Thus, if the base
rates of true and false statements are equal (as they typically are in
an experiment), then, according to Bayes’ rule, the posterior odds,
P(A truelx ,)/p(A false|x,), that the statement is true are also 4 to 1
(i.e., O, = 4). As indicated earlier, O, = c(A)/[1 — c(A)], which
can be rearranged to c(A) = O0,/(0, + 1). Thus, given X,,
O, = 4, and the confidence rating should be 0.8 (or 80%) because,
in the long run, giving a true response to all items associated with
a strength of evidence equal to x , results in a performance level of
80% correct.

What about an item that falls at the point labeled xg in Figure 57
More false statements than true statements generate that relatively
low subjective evidence value. Indeed, at that point, the height of
the true distribution is only %3 the height of the false distribution,
which means that for an item with that level of subjective evi-
dence, the likelihood ratio, p(xg[B true)/p(xg|B false), is equal
to 0.67 (i.e., Ly = 0.67). Given equal base rates of true and false
statements, Oy also equals 0.67, which means that the confidence
rating in this case should be 0.4 or 40%.

Now we may ask the question of interest: What if the task
instead involves a forced choice between an item that falls at point
A on the evidence axis and an item that falls at point B on the
evidence axis? Which item should be selected, and what level of
confidence should be expressed? Signal-detection theorists typi-
cally assume that the item with the highest likelihood of being true
will be chosen (see, e.g., Glanzer et al., 1993; Luce, 1963). Thus,
because in our example L, > L, item A would be selected as
being the true statement. What are the posterior odds that item A
is the correct choice? This question is not usually asked, but the
answer is implicit in the mathematical derivations offered by Luce
(1963) and others. To answer that question, we first compute the
likelihoods of obtaining both x, and xg under the two possibilities
that apply to the forced choice situation: Either A is true and B is
false, or A is false and B is true. The likelihood of observing x,
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given that A is true is represented by p(x,|A true), and the
likelihood of observing xg given that B is false is represented by
p(x|B false). Assuming, as we do in this article, that A and B are
independent, then the likelihood of observing both x, and x5 given
that A is true and B is false is equal to p(x,|A true)p(x4|B false).
Similarly, the likelihood of observing both x, and x5 given (al-
ternatively) that A is false and B is true to equal to p(x,]A
false)p(x|B true). The likelihood ratio for the forced choice case,
L, g, is therefore equal to

_ p(x4]|A true)p(xs|B false)
" p(x,4]A false)p(x3[B true)

LA,B

Note that the right side of this equation is equal to the ratio of
likelihood ratios. That is, L, 5 = L,/Lg. The two relevant hypoth-
eses in the forced-choice situation are (a) A is true and B is false,
and (b) A is false and B is true. Assuming equal base rates of these
two possibilities, the likelihood ratio is equal to the posterior odds
(i.e., Lyg = Opp). Thus, O, 5 = 04/0y. Note that this is the
normative model derived earlier in odds form (Equation 3). For the
example given above in which O, = 4 and Oy = 2/3, O, 3 is
equal to 6. In other words, in the long run, when comparing items
that fall at point A and point B on the evidence axis, item A is the
correct choice 6 out of 7 times (which corresponds to a confidence
rating of 0.86, or 86%). The signal-detection account is equivalent
to the normative model (Equation 1) and therefore leads to the
same conclusion for our running example: Choosing A with 86%
confidence is the normative response.

We have discussed the relationship between our normative
model and signal-detection theory, but it should be kept in mind
that we rejected the normative model as a descriptive model. This
does not mean, however, that we have rejected signal-detection
theory as a means of studying our topic, only that participants
behave as ideal observers. Indeed, our finding that Equation 3 is
not descriptively adequate is consistent with other research. Equa-
tion 3 is a special case of Wallsten and Gonzélez-Vallejo’s (1994)
stochastic judgment model, which was disconfirmed by Bender
(1998) using a task similar to ours (as discussed earlier). Stretch
and Wixted (1998) similarly showed that, in a yes—no recognition
task, participants adjusted their confidence ratings across various
study conditions in a manner that was quantitatively less extreme
than, but directionally consistent with, an ideal-observer signal-
detection model. A similar conclusion applies here when partici-
pants move from a yes—no to a forced-choice task.

General Discussion

The present research makes four contributions to understanding
the relation between confidence in yes-no and forced-choice tasks.
First, we derived the normative model for how confidence in two
hypotheses should change when they are first presented indepen-
dently in a yes-no task and then as mutually exclusive and ex-
haustive competitors in a forced-choice task.

Second, we empirically tested three distinct descriptive models
and were able to rule out one, the ratio model. We were not,
however, able to rule out the multiplicative and linear models. At
the individual level in both experiments, the linear model per-
formed best when participants were instructed to have their forced-
choice confidence sum to 100%. When there were no such instruc-
tions, the multiplicative model performed best in Experiment 1,

and the multiplicative and linear models performed about equally
well in Experiment 2. Interestingly, the additivity instructions
appeared to lead participants to use not just a linear strategy but an
equal-weighted linear strategy. Though linear models are known
for being able to mimic nonlinear processes well (which our
computer simulations also showed), qualitative analyses corrobo-
rated the model fitting results, indicating that it is not just the
robustness of the linear model that accounts for its success. Also of
interest is that the free parameter in the multiplicative model was
consistently less than 1, implying that confidence in the alternative
statement had less than optimal impact when reporting confidence
in the forced-choice task. Importantly, this latter finding also
allowed us to reject the normative model as a descriptive model.

Third, our least squares fits assumed Gaussian error in partici-
pants’ confidence reports, but computer simulations using a more
realistic representation of error (the beta distribution) supported
our conclusions from Experiments 1 and 2. The simulations were
critical for determining which measures of performance were and
were not helpful for deciding which models could be ruled out.
More generally, the simulations highlighted the importance of
understanding the implications of random error in confidence
reports (Erev, Wallsten, & Budescu, 1994; Soll, 1996).

Finally, we demonstrated the equivalence of the normative
model and the signal-detection analysis of confidence. We also
recast the normative model and the multiplicative model in terms
more familiar to signal-detection theorists (likelihoods and odds;
see Equations 3 and 4) to facilitate use of the models in that area.

A consistent empirical finding is that confidence judgments for
hypotheses in the forced-choice tasks were nonadditive in the
absence of explicit instructions to be additive. Many readers may
find this surprising, given that it was made clear that statements
forming each pair were mutually exclusive and exhaustive. Indeed,
the assumption of additivity on the part of researchers is so strong
that they rarely ask for confidence estimates for all items in a
forced-choice task. Furthermore, there have been several empirical
demonstrations of additivity for two mutually exclusive and ex-
haustive hypotheses (see, e.g., Wallsten et al., 1993), and such
additivity is a fundamental implication of a recent influential
theory of subjective probability (Tversky & Koehler, 1994). Re-
call, though, that we measured additivity in terms of mean absolute
deviation between summed confidence and 100 across all pairs,
whereas additivity is typically measured in terms of mean summed
confidence. As discussed earlier, the latter measure can mask
dramatic nonadditive confidence estimates, and we feel that the
former measure is more appropriate, at least under the current
circumstances.

As for why the nonadditivity occurred, the most natural inter-
pretation of the free parameter in the multiplicative model is that
it reflects the extent to which the strength of the nonfocal alterna-
tive is taken into account. The parameter consistently indicated that
the nonfocal alternative was underweighted, and one result of this
is nonadditivity (McKenzie, 1998, 1999). Another possible reason
for the nonadditivity, however, is that participants did not fully
believe the stipulation that the two options at the forced-choice
stage were mutually exclusive and exhaustive. Thus, one avenue of
future inquiry is to determine whether participants believe the
stipulation but discount the nonfocal alternative anyway (as the
multiplicative model assumes) or whether they do not fully believe
it and report their confidence in the options accordingly.
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Future research that can distinguish better between the linear and
the multiplicative models will also be useful. Our results indicate that
additivity instructions led participants to use an equal-weighted linear
rule for reporting confidence in forced-choice tasks. Qualitative anal-
yses also favored the linear model, providing evidence that the linear
model’s good quantitative performance is not due entirely to its ability
(shown by the simulations) to mimic the multiplicative model. None-
theless, because the linear model does mimic the multiplicative model
so well, experiments making more use of the critical tests we dis-
cussed earlier would probably be best.

Despite the wide variety of comtexts in which yes-no and
forced-choice tasks are used, we are reasonably confident that the
linear and multiplicative models will outperform the ratio and
normative models (though we cannot rule out the possibility that
an entirely different model from those we have examined is the
best descriptive model). Our results are reasonably consistent
across two experiments that, though dealing with similar content,
were different in that one dealt with hypothetical statements and
confidence and the other with actual statements and confidence.
Nonetheless, different content areas undoubtedly affect the mod-
els’ overall performance. Despite our relatively similar content and
context, we found that the models performed somewhat differently
between our two experiments, as well as between groups within
the same experiment. A perception experiment regarding the pres-
ence of visual stimuli might result in different parameter values
and amount of variance accounted for than our experiments using
general knowledge statements. The main factor that affects the
models’ free parameter appears to be the extent to which partici-
pants take into account the strength of the nonfocal alternative.
Factors that affect variance accounted for include the amount of
random error in judgment and the extent to which the entire
response scale is used. How the models perform across the variety
of domains in which yes-no and forced-choice tasks are used is an
open empirical question.

We stated at the beginning of this article that little is known
about how confidence in yes-no and forced-choice tasks is related.
We believe that we have made progress but have only scratched
the surface. Considerable theoretical and empirical work remains.
Our hope is that we have provided a promising starting point and
perhaps a nudge in the right direction.
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Appendix

Derivation of the Normative Model

In this appendix, we derive the normative model for combining confi-
dence estimates given the new knowledge that two propositions are mu-
tually exclusive and exhaustive. This model initially appears in Equation 1.
We show here that this formula is Bayes optimal under a few basic
assumptions.

Let A be the event that the first of a given pair of statements is true,
and let B be the independent event that the second statement in the pair
is true. Let X be the event that A and B are mutually exclusive and
exhaustive—that exactly one of the two statements is true. Formally, we
can write X as [(A A B) v (A A B)], where the A symbol is logical
“and,” the v symbol is logical “or,” and the covering horizontal bar
indicates logical negation. Let p(-) be an appropriate probability mass
function over these events.

We want to compute the value of c(A,B), which can normatively be
viewed as the probability of A given the fact that A and B are mutually
exclusive and exhaustive. In Bayesian terms, this is the value of p(A[X),
which may be calcnlated as follows:

p(AIX) = p(A A X)Ip(X)

=p(A ~ B)/p([A AB]VvI[A AB))

_ p(A A B)
~ p(A AB)+p(AAB)

_ p(A[B)p(B)
p(A[B)p(B) + p(A]B)p(B)

This is the normative model if one does not assume that A and B are
independent (prior to knowledge concerning the truth of X). When the inde-
pendence assumption is made (as in this article), the expression may be
simplified to:

p(A)p(B) i}
p(A)p(B) + p(B)p(A)

_ p(A)1 - p(B)]
~ p(A)1 - p(B)] + pB)[1 ~ p(A)]

p(AlX) =

Because p(A|X) is the normative correlate of c(A,B) and p(A) and p(B) are
the normative correlates of c(A) and ¢(B), respectively, this derivation
shows that Equation 1 is normative in a Bayesian sense.
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