Opiates

- alkaloids found in the opium poppy (Papaver somniferum)
- [Gk. opion = “poppy juice”]

Opioids

- compounds with opiate-like actions, including, but not confined to opiates (e.g., synthetic, endogenous opioids)
1. Naturally-occurring
 ● opium
 ● sap from opium poppy

Two major active alkaloids
 ● morphine
 ● codeine

Types of opioids

Surgery, Obstetrics and General Practitioners

Paregoric

- Camphorated tincture of opium
- Tincture of paregoric
Morphine

- Morpheus (god of Dreams)
 - son of Hypnos
- ~10% of opium by weight

Codeine

- methylmorphine
- ~0.5% of opium
2. Semi-synthetics

Heroin
- diacetylmorphine
- addition of two acetyl groups to morphine
- ~ 10x more potent than morphine
- pharmacological effect usually thought to be identical to morphine
 - in brain: heroin > morphine
 (new data suggest morphine and heroin may have different actions; 1999)

Semi-synthetic analgesics
- Hydromorphone (Dilaudid®)
- Hydrocodone (Hycodan®, Vicodin®)
- Oxycodone (Percodan®, Oxycontin®)
3. Synthetics

<table>
<thead>
<tr>
<th>Phenylpiperidines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fentanyl “china white”</td>
<td></td>
</tr>
<tr>
<td>- Carfentanil (Wildnil®)</td>
<td></td>
</tr>
<tr>
<td>- Meperidine (Demerol®) (MPPP)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methadone & Congeners</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Methadone (Dolophon®)</td>
<td></td>
</tr>
<tr>
<td>- Propoxyphene (Darvon®)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benzomorphans</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pentazocine (Talwin®)</td>
<td></td>
</tr>
</tbody>
</table>
Analgesic potency

- **Mild to moderate pain**
 - codeine, propoxyphene (Darvon®)
- **Moderately severe pain**
 - meperidine (Demerol®)
- **Severe pain**
 - heroin, hydromorphone (Dilaudid®)

4. Opioid antagonists

- naloxone (Narcan®)
- naltrexone
- Suboxone® (buprenorphine + naloxone)
5. Endogenous opioids

- Enkephalins, endorphins and dynorphins
- Morphine & codeine?

History of use - opium

Since recorded history
Ingredient in all sorts of medicinal preparations

History of use - morphine

“Soldiers disease”
History of use

Ads for heroin

Major effects

Analgesia
 ● Relief of pain in absence of impairment in other sensory modalities

Euphoria - Pleasure
 ● Produce sense of well being, reduce anxiety, positive feelings

Other effects

● Nausea & vomiting
● Respiratory depression
● Miosis (opposite of mydriasis)
● Gastrointestinal effects
● Cough Suppression
● Motor effects
Effects of repeated administration

Tolerance, withdrawal & sensitization

Tolerance and withdrawal

Behavioral withdrawal score vs. Time (hr)

LC unit activity vs. Time (hr)

Sensitization

- Psychomotor stimulant effects
- Rewarding effects
 (conditioned place preference)
Mechanisms of action

- Primary action on opioid receptors located in CNS +/- periphery

Different effects due to action at
- Different receptor subtypes
- Receptors in different locations

Endogenous opioids

Translation

Post-translational processing

Opioid peptide gene families

Three different gene families
- Proopiomelanocortin (POMC)
- Proenkephalin
- Prodynorphin (‘proenkephalin B’)

Translation

Post-translational processing
Precursor gene families

Proopiomelanocortin (POMC)
- β-endorphin
- ACTH, melanocortin SH

Proenkephalin -> Enkephalins
- met-enkephalin & 2 extended met-enk
- leu-enkephalin

Prodynorphine - forms of leu-enkephalin
- Dynorphins, A and B
- Neoendorphins, μ and β

Differential distribution

Endorphins
- discrete
- hypothalamic - endocrine related

Enkephalins and Dynorphins
- wide distribution, local circuit and short axon projections

Opioid receptors
Opioid receptors

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Preferred Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mu (µ)</td>
<td>Morphine & endorphins</td>
</tr>
<tr>
<td>Delta (δ)</td>
<td>Enkephalins</td>
</tr>
<tr>
<td>Kappa (κ)</td>
<td>Ketocyclazocine & dynorphins</td>
</tr>
</tbody>
</table>

- Each subtype has subtypes

Cellular actions

- G protein coupled receptors
- Inhibitory

(-Diagram showing cellular actions with labels and illustrations-)

Negatively-coupled

12.4
Role in drug action

Analgesia

Spinal actions
- Dorsal horn of spinal cord
- Primary pain afferents

Analgesia

Spinal actions
- Inhibit incoming pain signals

Opioid receptor

Spinal action
Supraspinal actions

- Stimulation > analgesia and inhibit cells in dorsal horn
- Lesion > block analgesia to systemic or local morphine

Dorsal horn 12.10
Analgesia

Supraspinal actions
- µ1 sites seem most important
- Specific blockade of µ1 shifts dose-response curve for morphine analgesia up to 12 fold to right

Heroin vs. Morphine
- difference pharmacokinetic?
- recent evidence for different receptors
 - MOR-1 knockouts

Analgesia - MOR1 knockouts

Morphine, but not heroin, analgesia abolished in Mor1 knockout mice

Heroin > 6-acetyl-morphine in vivo
Reinforcing effects

- All classical opioid drugs of abuse have a preference for μ sites (e.g., morphine, heroin, methadone, fentanyl etc.)
 - δ may contribute, but little known
- κ compounds are not self-administered
 - psychomimetic and aversive in humans

Opioid/DA interaction

- Intra-VTA opioid support SA and CPP
- DA antagonist or 6-OHDA lesion impair SA
- DA antagonist into VTA or ACC impair SA
Mechanism

μ compounds:
- Increase DA cell firing
- Increase DA release in ACC
- Accompanied by locomotor activation

Model for reinforcing effects

Site of action
- VTA – accumbens DA system

“Disinhibition”

κ compounds
- Decrease DA cell firing
- Decrease DA release
- Decrease locomotion
Respiratory depression

µ2 sites?
- Specific µ1 antagonist (naloxonazine) shifts analgesia dose - response curve for morphine to right
- Not shift dose-response curve for:
 - elevation of pCO2
 - depression of pO2
- Respiratory neurons in medulla in region of n. solitary tract

Gastrointestinal effects

µ and κ sites
- In stomach, small and large intestine
- Decreased motility
- Common bioassay > ability to inhibit intestinal contractions

MOR Knockouts

- Morphine has affinity for all opioid receptor subtypes (much stronger for mu)
- Evidence for site of action from pharmacological experiments with drugs that may act at multiple sites
- Which effects due to action at which receptor subtypes?
MOR Knockouts (MOR-/-)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine effect</td>
<td>Abolished</td>
</tr>
<tr>
<td>Spinal analgesia</td>
<td>Abolished</td>
</tr>
<tr>
<td>Supraspinal analgesia</td>
<td>Abolished</td>
</tr>
<tr>
<td>Reward</td>
<td>Abolished</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>Abolished</td>
</tr>
<tr>
<td>Respiratory depression</td>
<td>Abolished</td>
</tr>
<tr>
<td>Inhibition GI motility</td>
<td>Abolished</td>
</tr>
<tr>
<td>Psychoactivating effect</td>
<td>Abolished</td>
</tr>
</tbody>
</table>

(All effects maintained in DOR-/- and KOR-/-)

The Politics of Pain and Pain Management

Introduction

- **Prevalence**
 - Pain accounts for 80% of all medical complaints (30% debilitated at some time)
 - Pain is patient’s #1 reason why they fear disease
 - Pain affects 90% of patients with terminal disease (50% of ambulatory patients)

- **Obstacles for treatment**
 - Fear—patient, prescriber
 - Social and Legal obstacles
 - Lack of education
Political and Social Obstacles

- Overstated abuse potential of opiate drugs has been a serious obstacle to pain treatment
- Pain patients have been a casualty of the war on drugs
- No field to study pain until the 1970s (opiate receptor cloned)
- Very little formal training on pain management as part of medical school curriculum (often 1 hour)

Politics of pain

- Most doctors misinformed about the addictiveness of therapeutic opiates (e.g., vicodin v heroin or significance of routes of administration in addiction)
- Even when habit-forming this addiction outweighed thinking about patient's quality of life.
- Fear of reprisals on license by DEA a major issue
- Drug companies avoided new opiates

Politics of pain

- Pain patients looked down upon for complaining about pain (especially chronic pain)
- Pain treated as a valuable diagnostic indicator by doctors "don't want to cover up the pain" (even chronic neuropathic pain)
Politics of pain

Revolution in pain management had multifaceted roots- began in 1970s
 - conference on Pain formed unified field to study Pain, 1977 - American Pain Society (www.ampainsoc.org) 28-3600
 - discovery of endogenous opioids
 - activism by Bonica, Liebeskind, etc.
 - revolt by San Francisco cancer doctors
 - Centers for Pain Management Policy (e.g., Wisconsin)

Politics of pain

- Several states enacted legislation to protect doctors and patients (e.g., California's "pain patients bill of rights")
- Softening of war on drugs by Clinton administration
- Doctor's take back their rights (Doctor's make medical decisions)
- Medical marijuana acts

Politics of pain

- In cancer was clear need to treat pain outweighed any addiction
- It became clear most pain patients either didn't become addicted at all or developed mild dependence
- Pain management clinics have appeared all over the place (including Emory)
- Still many obstacles to adequate pain management, e.g., patient access is still very low and too many drug side-effects
Many obstacles remain

- Still difficult for patients to get treatment
- Triplicate prescriptions
- Cannot be called in
- Cannot be refilled
- Policing by DEA
- Few experts in pain
- Strong slow-release drugs are expensive
- Pain patients often poor, uninsured, and cannot travel or work

What is Pain?

• Medical Definition
 “Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage”
 International Association for the Study of Pain, 1979

• Operative Definition
 “Pain is whatever the experiencing person says it is, existing whenever he/she says it does.”
- Patient’s appearance can be very deceptive

What is Pain?

Current definitions of pain don’t work well for:
- Children who can’t speak or even older ones who can’t express themselves well
- Those who are mute or mentally ill
- Animals
- Those who hide their pain
- Emphasis on pain behaviors emerging
Reflection tells me that I am so far from being able to define pain, of which I here write, that the attempt could serve no useful purpose. Pain, like similar subjective things, is known to us by experience and described by illustration.

Definitions

Nociception: Potentially tissue damaging thermal, mechanical or chemical energy impinging upon specialized nerve endings of A-δ and C fibers.

Pain: Perceived nociceptive input to the nervous system.

Pain can occur without nociception!
Pain syndromes without nociception

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalamic syndrome</td>
<td>Phantom limb pain</td>
</tr>
<tr>
<td>Tic douloureux</td>
<td>Arachnoiditis</td>
</tr>
<tr>
<td>Postherpetic neuralgia</td>
<td>Atypical facial pain</td>
</tr>
<tr>
<td>Postparaplegia pain</td>
<td>Nerve root avulsion pain</td>
</tr>
<tr>
<td>Postthoracotomy pain</td>
<td>Neuropathic pain</td>
</tr>
</tbody>
</table>

Pain is a major cause of suffering!

Suffering: Negative affective response generated in higher nervous system regions in response to pain and other situations including fear, anxiety, isolation, depression, etc.

Pain behavior

All forms of behavior generated by the individual that are commonly understood to reflect the presence of nociception; for example, grimacing, saying ouch, limping, lying down, taking medicines, seeking health care, refusal to work.
Types of Pain

- Nociceptive Pain
 - Stimulation of somatic and visceral peripheral nociceptors by stimuli that damage tissue
- Neuropathic Pain
 - Pain resulting from non-inflammatory dysfunction of the peripheral/central nervous system in the absence of stimuli

Neuropathic Pain

- Prevalence
 - General population 0.6-1%
- Causes
 - Compression/infiltration of nerves by:
 - Tumors
 - Nerve Trauma secondary to procedures
 - Nervous System Injury
 - E.g., phantom-limb pain, neuralgia
 back injury, post-surgical pain

Types of Pain

- Transient Pain
 - Studied extensively in man and animals
 - Does not involve tissue damage
 - Activation of nociceptors in resting state
 - Not clinically relevant, save for procedural pain such as venipuncture, LP
Types of Pain

Acute Pain
- Activation of nociceptors in region of tissue damage
- Nociceptor function is altered by tissue changes
- Healing processes can eliminate tissue damage; nociceptor function returns to baseline

Chronic Pain
- Activation of nociceptors in region of tissue damage
- Nociceptor function is altered by tissue damage; CNS adapts permanently
- Body cannot heal injury, or damage to nervous system
- Organic cause unknown and untreatable (often iatrogenic)

Chronic pain is a special problem

Chronic Pain
- Associated with a social stigma
 - people expect you to get over illness
 - "get back to work"
 - associated with a lot of hiding of pain
- Debilitating and depressing producing lots of psychological problems
 - Especially poorly treated
 - lack of expertise and desire to treat by docs
 - lack of effective treatment
Afferent pain transmission

- Afferent fibers go to the CNS transmitting nociceptive message from trauma to dorsal horn of spinal cord
- A alpha, A beta, A gamma, A delta, B, or C
- Nociceptive transmission takes place in the A delta fibers (well-localized pain); C fibers (persistent pain)

Transduction of nociception

- Conversion of stimuli into electrical action potential
- What types of stimuli?
 - Heat or cold (e.g. radiation damage)
 - Pressure (e.g. tumor infiltration into bone)
 - Chemical (e.g. chemotherapy)

Peripheral Nociceptors

- What is a nociceptor?
 - Not spontaneously active
 - Level of stimulation must exceed threshold
 - Sensitization produces hyperalgesia
 - Tissue damage changes the sensitivity
- Sensitization is manifested as:
 - Decreased threshold
 - Increased intensity-prolonged firing
 - Spontaneous activity
Pain Theories and Pathways

- Spinal cord transmission—spinothalamic tract carries pain impulses; the lateral pathway (sharp, localized pain), the ventral pathway (dull, nonlocalized pain)
- Pathways merge in thalamus and connect in cortex
- Anterior Cingulate cortex—pain perception area

Types of Peripheral Nerve Fibers

- A Fibers (Fast Transmission)
 - Alpha - Proprioception (Muscles & Joints)
 - Beta - Mechanoreception (Cutaneous Tissue)
 - Delta - Primary nociceptive neurons

- C Fibers (Slow Transmission)
 - Primary nociceptive neurons

Neuronal Activities in Normal States

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Primary Afferent</th>
<th>Sensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Intensity</td>
<td>A-Beta</td>
<td>Innocuous</td>
</tr>
<tr>
<td>High Intensity</td>
<td>A-Delta/C</td>
<td>Pain (nociception)</td>
</tr>
</tbody>
</table>
Neuronal Activities in Pain States

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Pri Afferent</th>
<th>Sensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Intensity</td>
<td>A-Beta</td>
<td>Pain (alldynia)</td>
</tr>
<tr>
<td>High Intensity</td>
<td>A-Delta/C</td>
<td>Hyperalgesia</td>
</tr>
</tbody>
</table>

Pain Theories and Pathways

- Clusters of opiate receptors throughout ascending and descending pain pathways
- Endogenous opioids also in brain
- Opiate receptors—µ (µ1 and µ2), δ (delta), κ (kappa), σ (sigma) and ε (epsilon)
 - µ1 are primarily responsible for analgesic effects (but maybe also δ, κ, ε)

Opioid (Narcotic) analgesics

- Morphine
- Meperidine (Demerol)
- Codeine (Tylenol-3)
- Hydromorphone (Dilaudid)
- Hydrocodone and acetaminophen (Vicodin)
- Methadone (Dolophine)
- Fentanyl, alfentanil, sufentanil, remifentanil (e.g., sublimaze & duragesic)
- Oxycodone (Percodan)
- Oxycodone and acetaminophen (Percocet)
- Propoxyphene (Darvon)
Opioids

- Inhibit the transmission of pain impulses in sensory pathways in the spinal cord
- Reduce cortical responses all over the brain
- Alter behavioral responses to pain
- Tolerance & dependence may develop, not necessary a sign of abuse or addiction

Opioids

- Despite reports of abuse vast majority of pain patients use chronically without addiction or dependence
- Long-acting much better than short-acting (prevents on-off and sensitization)
- ATC (around-the-clock) preferable to PRN

Non-narcotic analgesics

- Salicylates (aspirin–historically there were several derivatives)
- Aniline derivatives (Tylenol-acetaminophen)
- Non-steroidal anti-inflammatory agents (NSAIDS)
NSAIDs

COX 1 & COX 2 inhibitors
- ibuprofen (Motrin, Advil)
- naproxen (Aleve)
- diclofenac (Voltaren)
- indomethacin (Indocin)
- ketorolac (Toradol)
- sulindac (Clinoril)
- mefanamic (Ponstel)
- piroxicam (Feldene)
- flurbiprofen (Ansaid)
- ketoprofen (Orudis)

Selective COX 2 inhibitors
- celecoxib (Celebrex)
- rofecoxib (Vioxx)
- valdecoxib (Bextra)

Celebrex & Vioxx

- Aspirin and most commonly used NSAIDs nonselectively inhibit COX 1 and COX 2
- COX 2 agents have a lower incidence of the ulcerogenic side effects (they increase the risk of heart attack, stroke, and clotting disorders, however)
- Identified by genetic screen of aspirin
- Side effects include headache

Therapeutic effects of NSAIDs

- Antipyretic
- Analgesic—low to moderate pain intensity; lack unwanted CNS effects of opioids
- Antiinflammatory
- Side effects still include ulcers, blood-thinning, and sensitivity
- Only aspirin proven to show anti-MI effects and still in its own category
Aniline derivatives–Acetaminophen (Tylenol)

- Centrally mediated hypothalamic stimulation to alter pain perception
- Clinical use–analgesic, weak antipyretic
- No action as anti-inflammatory
- Overdosage is associated with hepatic necrosis/must be treated within 10 hours - SERIOUS PROBLEM

Pain adjuvants

- Tricyclic antidepressants and SSRIs
- Anticonvulsants
- Corticosteroids
- Muscle relaxants
- Capsaicin
- Local anesthetics (lidocaine, benzocaine)
- Non-pharmacologic therapies
- NMDA receptor antagonists (ketamine, DXM, CPP)
- Patient-controlled analgesia/epidural analgesia

Clinical applications

- Review history (drug abuse, allergy)
- Assess level of function and pain level
- Monitor patient pain relief, tolerance
- Level of function after treatment
- Surgical treatment of chronic pain is a last resort (exception = pumps, stimulators, rhizotomy), usually makes things worse